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Abstract. In this paper, we prove the Lipschitz continuity with respect to the Hausdorff
metric of some parametrized families of sets in R3. This implies that many Hausdorff
approximation (Hausdorff matching) problems can be reduced to searching a global min-
imum of a real Lipschitz function of real variables. Practical methods are presented for
obtaining reduced search spaces for these minimization problems.
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1. Introduction

Shape recognition is a challenging task which has numerous applications.
Given a set of model shapes and an input shape, the problem consists
of identifying the model shapes which are similar to the input shape. For
example, most robotics applications for part inspection and VLSI design
involve locating and identifying objects. In general, shape recognition is for-
mulated as the problem of optimizing a cost function. In the case of 2D
and 3D problems cost functions frequently used are Hausdorff metric and
the volume of the symmetric difference between sets. This paper is about
the Hausdorff distance.

Let (X, d) be a complete metric space. We denote by H(X) the space
whose points are the compact subsets of X other than the empty set. If A

and B are elements of H(X) the distance between them is given by

d(A,B)≡min{d(x, y)/x ∈A,y ∈B}.

Let x ∈X and B ∈H(X). Define

d(x,B)≡min{d(x, y)/y ∈B}.

Let A,B ∈H(X). Define

h(A,B)≡max{d(x,B)/x ∈A}.
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d(x,B) is called the distance from the point x to the set B and h(A,B)

is called the directed Hausdorff distance from A to B.
The Hausdorff distance between two elements A and B of H(X) is

defined as

H(A,B)≡max{h(A,B), h(B,A)}.

H is a metric on the space H(X).
From the above definitions, we can give an abstract formulation of the

problem of shape recognition based on the Hausdorff distance. Let F be a
family of sets in H(X) and K∗ a fixed element in H(X). F ∈F is called an
element of best approximation of K∗ by the elements of F , if

H(K∗,F )= inf
K∈F

H(K∗,K). (1)

Hausdorff approximation (matching) of a compact set K∗ by means of
a family F consists of finding a solution to problem (1).

In RN , if we denote by {M(K0)} the set of images of K0 under rigid
motions M, the problem of the recognition of the body K∗ by means of
a set of models {K1,K2, . . . ,Kn}, consists of solving problem (1) with F =⋃n

i=1{M(Ki)}. If the solution F ∈{M(Kj)} we say that Kj is the model cor-
responding to K∗.

Algorithms for some specific problems have been proposed to achieve
exact Hausdorff matching

• In R2

– Huttenlocher et al. [17] describe an algorithm that optimally
matchs, under translation, a set A of m points onto a set B of n

points in time O(nm(n+m) log(nm)).
– Chew et al. [7] give an algorithm that optimally matchs, under

Euclidean motion, a set A of m points onto a set B of n points
in time O((n + m)5 log2

(nm)). They also give an algorithm with
expected time O((n + m)6 log2

(nm)) in the case that A and B are
polygons having m and n vertices, respectively. These algorithms are
based on the Parametric Search technique.

• In R3

– Huttenlocher et al. [17] describe an algorithm that optimally matchs
a finite set of m points on a finite set of n points under translation,
in time O(n2m2(n+m)1+ε).

– Zhu [31] gives a method that finds the optimal approximate ball
to a convex polyhedron P with n vertices, in time O(n7 log n).
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• In RN

– Algorithms for set of points and matching under translation are
given in [8].

– Wenk [30] shows that a translation that minimizes the Hausdorff
distance between two polyhedral sets of total complexity n in RN+1

can be computed in O(nN2+3N+2 log2
n) time for N �2.

– Algorithms for matching two polyhedral terrains in higher dimen-
sions under translation, are given in [18].

Algorithms for finding the optimal solution of the matching problem
use quite sophisticated techniques from computational geometry and there-
fore, are probably too complicated to implement. Also the asymptotic run-
ning times are rather high. One approach to overcome these problems are
approximation algorithms. These algorithms do not necessarily find the
optimal solution εopt, but one which is bounded by εopt multiplied by a
constant factor (pseudooptimal matching).

• In R2

– Goodrich et al. [11] describe an algorithm that finds a rigid motion
M such that h(M(A),B)� 4εopt, where A is a set of m points and
B a set of n points. The asymptotic running time of this algorithm
is O(n2m log n). A more effective method for this problem can be
found in [10].

– Alt et al. [2, 3] describe algorithms for Hausdorff matching of poly-
gons based on the technique of reference points.

• In R3

– Goodrich et al. [11] describe an algorithm that finds a rigid motion
M such that h(M(A),B)� (8+ε)εopt (0<ε <1), where A is a set of
m points and B a set of n points. The asymptotic running time of
this algorithm is O(n3m log n). A slightly better algorithm for this
problem has been reported in [10].

– Zhu [31] describes a linear time algorithm that finds an axis-parallel
box C such that H(P,C)�

√
3εopt, where P is a fixed convex poly-

hedron with n vertices.

• In RN

– Pseudooptimal matching with reference points is studied in [1].
– Hagedoorn [13] describes a technique called Geometric Branch and

Bound (GBB), that recursively subdivides the transformation space
into cells. For each cell a lower and upper bounds of the infimum
value of the similarity measure are obtained and the convergence
of the procedure is proved. The main drawback of this algorithm
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is the way of obtaining the cited bounds based on “the traces
approach”. This method gives an expression of the lower bound for
a cell that seems difficult to compute.

Consequently, we can conclude that do not exist efficient algorithms for
matching 3D figures. Furthermore, some problems of this kind are NP-
hard [4].

With these results in sight, it would be interesting to study the applica-
tion of standard global optimization techniques to the Hausdorff matching
problem.

Here, we consider the following families of sets F , whose elements are
subsets of R3

• (A) The set of axis-parallel boxes of variable center and dimensions.
• (B) The set of spheres of variable center and radius.
• (C) {M(K0)}, images of a fixed compact set K0 under rigid motions M.

We prove that matching problems involving the above families of sets can
be solved with an arbitrary precision using standard techniques of global
Lipschitz optimization [14]. An important example of them is the Lipschitz
branch and bound [16].

We provide explicit upper bounds of the Lipschitz constant for the set
families above cited.

This paper is organized as follows:
In Section 2, we define F as a parametrized family of sets, and show that

if this family is Lipschitz continuous with respect to the Hausdorff metric,
then the Hausdorff distance from the elements of F to a fixed K∗ ∈H(X)

is a Lipschitz function with respect to the parameters of F .
In Section 3, we give auxiliary results about the computation of the

Hausdorff distance between different geometric bodies.
In Section 4, we prove that the set families A,B, and C are Lipschitz

continuous with respect to the Hausdorff metric.
In Section 5, we analyze the problem of determining a reduced search

space for the above set families when K∗ and the elements of F are
convex. The aim is to reduce this set as much as possible for decreas-
ing the computation time of minimization algorithms based on partition
strategies.

From now on, we denote by RN the real affine euclidean space and also
the N -dimensional vectorial euclidean space. We call ‖ · ‖ to the euclidean
norm in RN , and d to the distance induced by this norm (sometimes, d will
denote an abstract metric). We call x.y to the inner product of the vectors
x and y. The translation operator along a vector u will be denoted by Tu.

If S is a bounded subset of RN we call ∂S to its boundary. The diameter
of S is defined as
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δ(S)≡ sup
x1,x2∈S

d(x1,x2).

If A ∈ H(RN) is convex, we define the circumsphere of A as the sphere
of minimum diameter containing A [20, pp. 103]. We denote by πA(x) the
Euclidean projection of a point x onto A.

If K ∈H(RN) is not convex, we define

πK(x)≡{y ∈K/d(x,y)=min
z∈K

d(x, z)}.

2. Hausdorff Matching and Parametrized Set Families

In this section, we assume that (X, d) is a complete metric space. If F is a
parametrized set family (set valued function), that is,

F ≡{K(s)∈H(X), s ∈D ∈H(Rm)},

problem (1) can be stated as
Find t ∈D such that

H(K∗,K(t))= inf
s∈D

H(K∗,K(s)).

H(s)≡H(K,K(s)) can be considered as a function from D ⊂Rm into R.
We say that the parametrized family F is Lipschitz continuous on D

with respect to the Hausdorff metric, if there exists a constant L> 0 such
that

H(K(s),K(s′))�L‖s − s′‖ for all s, s′ ∈D.

LEMMA 1. Let A,B,C ∈H(X), then

|H(A,B)−H(A,C)|�H(B,C).

Proof. Since the Hausdorff distance is a metric on H(X) [6, pp. 32],
we have

H(A,B)�H(A,C)+H(C,B),

H(A,C)�H(A,B)+H(B,C).
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Hence

PROPOSITION 1. If F is Lipschitz continuous on D, then H(s) is a Lips-
chitz function on D.

Proof. By Lemma 1, if s, s′ ∈D

|H(s)−H(s′)|= |H(K,K(s))−H(K,K(s′))|
�H(K(s),K(s′))�L‖s − s′‖.

Therefore, we can solve Hausdorff matching problems of the above type
by means of an algorithm based on the Lipschitz property [14], if the fol-
lowing two conditions are verified:

• (L1) H(K∗,K(s)) can be computed for all s ∈D.
• (L2) The family F = {K(s) ∈ H(X)/s ∈ D} is Lipschitz continuous

on D.
The parametrized set families A,B, and C do not have a compact domain
for their parameters. In Section 5, we show how to obtain a suitable com-
pact subdomain depending on the set K∗ to be approximated.

3. Computation of the Hausdorff Distance in Some Particular Cases

In this section, we give expressions based on projections for the calculus of
the Hausdorff distance in some particular cases. They will be useful for

• Computing the succesive Hausdorff distances in a Lipschitz optimiza-
tion procedure (L1).

• Proving the Lipschitz continuity of the parametrized set families A,B,
and C (L2), and finding concrete upper bounds of the Lipschitz con-
stant (Section 4).

• Reducing the search space of the minimization problems (Section 5).

We need some previous definitions and results.
Let S be a set contained in RN , we call convex hull of S to

conv(S)=
⋂

{C/C is convex and C ⊃S}.

We call polytope to the convex hull of a finite set of points in RN .
The set {x1, . . . ,xp} is a minimal representation of the polytope P , if

P = conv({x1, . . . ,xp}) and for each i =1, . . . , p

xi /∈ conv

⎛

⎝
⋃

j 	=i

xj

⎞

⎠ .
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Every polytope has a minimal representation and this representation is
unique [20]. We call vertices of P to the points {x1, . . . ,xp} of a minimal
representation of P .

LEMMA 2. Let P be a polytope defined as the convex hull of their vertices,
that is, P = conv({x1, . . . ,xp}). Let K be a compact and convex set in RN ,
then

h(P,K)= max
i=1...p

d(xi,K).

From this result, we have

LEMMA 3. Let P and Q be two polytopes defined as the convex hull of
their vertices, that is,

P = conv({x1, . . . ,xp}), Q= conv({y1, . . . ,yq})

then, we have

H(P,Q)=max
(

max
i=1,... ,p

d(xi ,Q), max
j=1,... ,q

d(yj ,P)

)

.

The above formula can be written in the operative form

H(P,Q)=max
(

max
i=1,... ,p

d(xi , πQ(xi)), max
j=1,... ,q

d(yj , πP(yj ))

)

. (2)

A proof of Lemma 2 can be found in [25] (in that paper is given an effi-
cient algorithm for finding the Hausdorff distance between polytopes which
have many vertices).

The projections in (2) can be calculated by means of projectors on poly-
topes [23, 29], or fast projectors on polyhedra based on local properties
[22, 24].

To obtain the Hausdorff distance between two spheres we use

LEMMA 4. Let (X, d) be a complete metric space and let A,B,C ∈H(X).
If B ⊂C, then h(A,C)�h(A,B).

For a proof, see [6, pp. 29].
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LEMMA 5. Let S1 = B̄r1(c1) and S2 = B̄r2(c2) be two closed spheres in RN

and the sets

Ai ={c2 +λ(c1 − c2), λ�0}∩ ∂Si, i =1,2.

B1 ={c1 +λ(c2 − c1), λ�0}∩ ∂S2,

B2 ={c1 +λ(c2 − c1), λ�0}∩ ∂S1.

Consider the points

• a1,b1, elements of A1 and B1, respectively, with maximum value of λ.
• a2 =A2 and b2 =B2.

Then

h(S1, S2)=‖a1 −a2‖ (0, if S1 ⊂S2),

h(S2, S1)=‖b1 −b2‖ (0, if S2 ⊂S1).

Proof. To establish the identity for h(S1, S2) we suppose that S1 is not
contained in S2. Consider the following two cases:

(1) c1 /∈S2. We have that a2 =πS2(c1). Let a′ be any other point in S1 −S2.
We have to prove that

‖a′ −πS2(a
′)‖�‖a1 −πS2(c1)‖=‖a1 −a2‖.

By the properties of the projection on a closed, convex set [5, pp. 11]

(πS2(a
′)−πS2(c1)).(a′ −πS2(a

′))�0. (3)

On the other hand

‖a′ − c1‖�‖a1 − c1‖= r1. (4)

Since

(πS2(a
′)−πS2(c1))+ (a′ −πS2(a

′))= (c1 −πS2(c1))+ (a′ − c1)

it follows that

‖πS2(a
′)−πS2(c1)‖2 +‖a′ −πS2(a

′)‖2 +2(πS2(a
′)−πS2(c1)).(a′ −πS2(a

′))
=‖c1 −πS2(c1)‖2 +‖a′ − c1‖2 +2(c1 −πS2(c1)).(a′ − c1).
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Applying the Schwarz inequality and using (3) and (4), we have

‖a′ −πS2(a
′)‖2 � (‖c1 −πS2(c1)‖+‖a′ − c1‖)2

� (‖c1 −πS2(c1)‖+‖a1 − c1‖)2 =‖a1 −πS2(c1)‖2.

(2) c1 ∈ S2. In this case, a2 is the nearest point to c1 in ∂S2. If we call
dm to the distance d(a2, c1) we have h(S1, S2)� r1 −dm, B̄dm

(c1)⊂S2 and by
Lemma 4, we have

r1 −dm �h(S1, S2)�h(S1, B̄dm
(c1))= r1 −dm.

Therefore,

h(S1, S2)= r1 −dm =‖a1 −a2‖.

h(S2, S1) is obtained by analogous reasoning.

The Hausdorff distance between a convex polytope and a sphere is given
by

PROPOSITION 2. Let S be a sphere in RN of radius r and center c (S =
B̄r(c)), and let P be a polytope defined as the convex hull of their vertices,
that is, P = conv({x1, . . . ,xp}), then

1. h(P, S)=maxi=1,...,p d(xi , S).

2. If c /∈P . Consider the set

A={πP(c)+λ(c −πP(c)), λ�0}∩ ∂S.

Let a be the element of A with maximum λ, then

h(S,P)=‖a −πP(c)‖.

3. If c ∈P . Let dm be the shortest distance from c to the faces of P , then

• If R >dm, then h(S,P)= r −dm.
• If R �dm, then h(S,P)=0.

Proof. Part 1 is a consequence of Lemma 2. Parts 2 and 3 can be
proved in a similar way than Lemma 5.

We remark that the above proposition can be stated if the set P is any
convex and compact set in RN . The difference is

h(P, S)=max
x∈P

d(x, S)
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and

dm =d(c, ∂P).

4. Lipschitz Continuity of Some Parametrized Set Families in R3

4.1. axis-parallel boxes of variable center and dimensions

Let a,a′ ∈R3 and let d,d′ ∈R3
+ ≡{x∈R3/xi �0, i =1,2,3}. Two axis-parallel

boxes C1 and C2 are defined by

C1 = conv({a +b.d/b ∈{0,1}3}),
C2 = conv({a′ +b′.d′/b′ ∈ {0,1}3}).

We say that the vertices vk of C1 and wk of C2 are homologous if
NC1(vk)=NC2(wk) (where NC(x) is the normal cone of the convex C at x).

LEMMA 6. Let vk and wk be two homologous vertices in C1 and C2, respec-
tively, then

d(vk, πC2(vk))�d(vk,wk).

Proof. By definition

d(vk, πC2(vk))= min
w∈C2

d(vk,w).

THEOREM 1. The family of axis-parallel boxes in R3 defined by

A≡{conv({a +b.d/b ∈{0,1}3}),a ∈R3,d ∈R3
+}

is a Lipschitz continuous function of the six real variables (a,d).
Proof. Consider two axis-parallel boxes C1 and C2. By Lemmas 3 and 6,

we have that there exist two homologous vertices vk,wk in C1 and C2, respec-
tively, such that

H(C1,C2)�d(vk,wk).
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Since vk and wk are homologous, we have

vki
=ai +bidi, wki

=a′
i +bid

′
i , i =1,2,3.

Hence

d(vk,wk)=
√
√
√
√

3∑

i=1

(ai −a′
i +bi(di −d ′

i ))
2

�

√
√
√
√

3∑

i=1

2((ai −a′
i)

2 + (di −d ′
i )

2)

�
√

2

√
√
√
√

3∑

i=1

((ai −a′
i)

2 + (di −d ′
i )

2).

4.2. spheres of variable center and radius

THEOREM 2. The family of closed spheres in R3

B ≡{B̄r(c), c ∈R3, r ∈R+}

is a Lipschitz continuous function of the four real variables (c, r).
Proof. Let S1 = B̄r1(c1) and S2 = B̄r2(c2) be two spheres.
If we call d to c1 − c2, we have

a1 = c1 + r1
d

‖d‖ , a2 = c2 + r2
d

‖d‖

and, by Lemma 5

h(S1, S2)=‖a1 −a2‖=‖d + (r1 − r2)
d

‖d‖‖
�‖d‖+ |r1 − r2|

�
√

2

√
√
√
√

3∑

i=1

(c1i − c2i)2 + (r1 − r2)2.

(if S1 ⊂S2, then h(S1, S2)=0 and the bound remains valid).
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We have the same result for h(S2, S1), therefore,

H(S1, S2)�
√

2

√
√
√
√

3∑

i=1

(c1i − c2i)2 + (r1 − r2)2.

4.3. sets generated by rigid motions of a compact set K0 in R3

A rigid motion in RN is defined by the application y =Rx + t.

• R is an element of the group SO(N) [real orthogonal matrices (RtR=
I ) such that det R =1].

• t is an element of RN .

The set of rigid motions in RN will be denoted by RM(N).
Let K0 be a fixed compact set in R3, define

C ≡{K ∈H(R3)/∃M ∈RM(3) such that K =M(K0)}.

We need the following results and definitions.

LEMMA 7. Let K0 be a compact set in R3, let M and M ′ be rigid motions
in R3,K =M(K0) and K ′ =M ′(K0), then

H(K,K ′)�max
v∈K0

‖M(v)−M ′(v)‖.

Proof. By definition

H(K,K ′)=max(max
y∈K

‖y −πK ′(y)‖,max
z∈K ′

‖z −πK(z)‖).

(if πK ′ and πK are multivalued, πK ′(y) and πK(z) denote any fixed rep-
resentant of the respective set).

Let Md be the rigid motion M
′ ◦M−1, we have

H(K,K ′)�max(max
y∈K

‖y −Md(y)‖,max
z∈K ′

‖z −M−1
d (z)‖)

=max(max
v∈K0

‖M(v)−Md(M(v))‖,max
w∈K0

‖M ′(w)−M−1
d (M ′(w))‖)

=max(max
v∈K0

‖M(v)−M ′(v)‖,max
w∈K0

‖M ′(w)−M(w)‖).
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THEOREM 3. For every rotation R ∈ SO(3) there are three angles θ1, θ2,
and θ3 (Euler angles) such that R is a matrix of the form

⎡

⎣
c3 −s3 0
s3 c3 0
0 0 1

⎤

⎦

⎡

⎣
1 0 0
0 c2 −s2

0 s2 c2

⎤

⎦

⎡

⎣
c1 −s1 0
s1 c1 0
0 0 1

⎤

⎦

=
⎡

⎣
c1c3 − s1c2s3 −s1c3 − c1c2s3 s2s3

c1s3 + s1c2c3 −s1s3 + c1c2c3 −s2c3

s1s2 c1s2 c2

⎤

⎦

(We denote by si and ci, sin θi and cos θi , respectively). Furthermore

0� θ1, θ3 �2π, (5)

0� θ2 <π. (6)

For a proof, see [21, pp. 32].
In addition to the euclidean norm we use the following norms in RN

‖x‖∞ = max
i=1,...N

|xi |.

‖x‖1 =
N∑

i=1

|xi |.

If A is a matrix associated to a linear transformation from RN to RN ,
the matrix norm subordinated to the vector norm ‖.‖v is defined as

‖A‖v ≡ max
‖x‖v=1

‖Ax‖v.

A consequence of this definition is

‖Ax‖v �‖A‖v ‖x‖v.

Some properties of norms are given by

LEMMA 8. If x ∈RN and A is a real, N ×N matrix, then

(a) ‖x‖∞ �‖x‖�
√

N‖x‖∞.

(b) ‖x‖∞ �‖x‖1 �N‖x‖∞.

(c) ‖A‖∞ = max
i=1,...N

N∑

j=1
|aij |.
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We use the notation

θ ≡ (θ1, θ2, θ3),

t ≡ (t1, t2, t3),

(θ, t)≡ (θ1, θ2, θ3, t1, t2, t3).

LEMMA 9. If M and M ′ are rigid motions in R3, and v ∈R3, then

‖M(v)−M ′(v)‖� (1+ (6
√

3+
√

6)‖v‖∞)‖(θ, t)− (θ ′, t′)‖.
Proof. By the definition of rigid motion, we have

‖M(v)−M ′(v)‖�‖(R −R′)v‖+‖t − t′‖. (7)

We use the notation

�≡R −R′.

If we apply the mean value theorem, the Schwarz inequality and the
bounds

|si |�1 |ci |�1,

to the entries of R, we have

|�11|, |�12|, |�21|, |�22|�3‖θ − θ ′‖,
|�13|, |�23|, |�31|, |�32|�

√
2‖θ − θ ′‖,

|�33|�‖θ − θ ′‖.

Hence

3∑

j=1

|�1j |,
3∑

j=1

|�2j |� (6+
√

2)‖θ − θ ′‖,

3∑

j=1

|�3j |� (1+2
√

2)‖θ − θ ′‖,

therefore, by Lemma 8(c)

‖�‖∞ =max
i=1,3

(

3∑

j=1

|�ij |)� (6+
√

2)‖θ − θ ′‖.
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By Lemma 8(a)

‖�v‖�
√

3‖�v‖∞
�

√
3‖�‖∞‖v‖∞

� (6
√

3+
√

6)‖v‖∞‖θ − θ ′‖.

Hence, by (7),

‖M(v)−M ′(v)‖�‖�v‖+‖t − t′‖
� (6

√
3+

√
6)‖v‖∞ ‖ θ − θ ′ ‖+‖t − t′‖

� (1+ (6
√

3+
√

6)‖v‖∞)‖(θ, t)− (θ ′, t′)‖.

THEOREM 4. The family of compact sets generated by rigid motions of a
fixed K0 ∈H(R3)

C ≡{K ∈H(R3)/∃M ∈RM(3) such that K =M(K0)}
is a Lipschitz continuous function of the six real variables (θ ,t).

Proof. By Lemma 7

H(M(K0),M
′(K0))�max

v∈K0

‖M(v)−M ′(v)‖

hence, by Lemma 9

H(M(K0),M
′(K0))�max

v∈K0

(1+ (6
√

3+
√

6)‖v‖∞)‖(θ, t)− (θ ′, t′)‖.

We remark that

• If we repeat the steps of the proof of Lemma 9 for the rotation
expressed as a Yaw–Pitch–Roll transformation, we obtain the same
upper bound of the Lipschitz constant.

• If K0 is a polyhedron defined as the convex hull of their vertices, that
is, K0 = conv({x1, . . . ,xp}), the upper bound of the Lipschitz constant
is

max
v∈K0

(1+ (6
√

3+
√

6)‖v‖∞)=1+ (6
√

3+
√

6) ( max
i=1...p

‖xi‖∞).

• If K0 is a finite set of points, the upper bound is

1+ (6
√

3+
√

6) (max
vi∈K0

‖vi‖∞).
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5. Determination of a Reduced Search Domain for Parameters in
Hausdorff Matching Problems

When we try to solve a Hausdorff matching problem of type A or B by
means of a Lipschitz optimization procedure, the initial domain of the
parameters is infinite.

In the case of rigid motions (C) the search space for the angular variables
(θ1, θ2, θ3) is given by (5) and (6) but the search space for the translation
variables (t1, t2, t3) is infinite.

This fact makes difficult the application of partition strategies to Haus-
dorff matching problems. In this section, we give practical procedures for
obtaining reduced search spaces in the case of compact, convex sets. The
aim is to decrease this domain as much as possible.

First, from the results of Section 4, we note that the functions

H(s)=H(K∗,K(s)),

where K(s) ∈ F (A,B or C), are continuous. Since they are also coercive,
they have at least one global minimizer [16, pp. 13].

We need the following auxiliary results.

PROPOSITION 3. Let A,B ∈H(R3) be convex sets, such that

H(A,B)= min
K∈F

H(A,K),

where F =A,B or C, then d(A,B)=0.
Proof. It is equivalent to prove that, if d(A,B) 	=0, then

H(A,B) 	= min
K∈F

H(A,K).

Let a0 ∈A and b0 ∈B be a nearest pair of points in A and B, respectively.
By the convexity of A and B, we can find two planes PA and PB which are
orthogonal to the vector b0 −a0 and that define the halfspaces

P −
A ={x ∈R3/(x −a0).(b0 −a0)�0},

P +
B ={x ∈R3/(x −b0).(b0 −a0)�0}

and such that
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• a0 ∈PA and b0 ∈PB.
• P −

A ⊃A and P +
B ⊃B.

• d(PA,PB)=d(A,B).

Let a be any point of A and b =πB(a). Translate B towards A along

u = a0 −b0

‖a0 −b0‖γ (0<γ <d(A,B)).

Let B ′ =Tu(B) and b′ =Tu(b). Take the point a0 as the coordinate origin,
and the line that contains b0 −a0 as the x-axis, we have

a = (a1, a2, a3) b = (b1, b2, b3) b′ = (b1 −γ, b2, b3), (8)

hence

d(a,B ′)�d(a,b′)<d(a,b)�h(A,B)

therefore,

h(A,B ′)=max
a∈A

d(a,B ′)<h(A,B).

Now, let b′ be any point of B ′ and b =T−u(b′). By (8), we have

d(b′,A)�d(b′,a)<d(b,a)�h(B,A),

hence

h(B ′,A)=max
b′∈B ′

d(b′,A)<h(B,A).

Therefore,

H(A,B ′)<H(A,B).

Finally, consider
• If B =conv({a+b.d/b∈{0,1}3})∈A , then Tu(B)=conv({a+u+b.d/b∈

{0,1}3})∈A.
• If B = B̄r(c)∈B, then Tu(B)= B̄r(c +u)∈B.
• If B ∈C, then Tu(B)∈C.

LEMMA 10. If A∈H(R3) is convex, then there exists a unique point p0 ∈A

such that

H({p0},A)=min
p∈R3

H({p},A).
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Proof. By definition

H({p},A)=max{d(p,A),max
x∈A

d(p,x)}.

First, we prove that p0 /∈A is impossible. It suffices to prove that if p /∈A,
then we can find a point p′ ∈A such that

H({p′},A)<H({p},A). (9)

Let p′ be πA(p), then

0=d(p′,A)<d(p,A)=‖p−p′‖. (10)

If x ∈A, from the convexity of A, it follows that

d2(p,p′)+d2(p′,x)�d2(p,x),

hence

d(p′,x)<d(p,x) for all x ∈A. (11)

Let a ∈A such that

d(p,a)=max
x∈A

d(p,x) (12)

and let a′ ∈A such that

d(p′,a′)=max
x∈A

d(p′,x). (13)

By (11) and (12)

d(p′,a′)<d(p,a′)�d(p,a). (14)

(9) follows from (10) and (12)–(14).
By Lemma 1



HAUSDORFF MATCHING AND LIPSCHITZ OPTIMIZATION 511

|H(x,A)−H(y,A)|�‖x −y‖ for all x,y ∈R3.

Therefore, if A is fixed, H(x,A) is a continuous function of x. Since A

is compact, we have that H(x,A) has a global minimum in A.
Finally, we prove that p0 is unique. Let p0,p′

0 ∈A such that

p0 	=p′
0

and

min
p∈A

(max
x∈A

d(p,x))=max
x∈A

d(p0,x)=max
x∈A

d(p′
0,x)= r, (15)

where r is the radius of the lowest volume sphere containing A (circum-
sphere of A).

Since A⊂ B̄r(p0) and A⊂ B̄r(p′
0), it follows that

A⊂ B̄r(p0)∩ B̄r(p′
0).

Since A is convex, m= (p0 +p′
0)/2∈A. We can choose the coordinate sys-

tem in such a way that m= (0,0,0),p0 = (γ,0,0), and p′
0 = (−γ,0,0), where

0<γ <r, then

• If γ < r√
2

then A⊂ B̄r(p0)∩ B̄r(p′
0)⊂ B̄√

r2−γ 2(m).

• If γ � r√
2

then A⊂ B̄r(p0)∩ B̄r(p′
0)⊂ B̄γ (m).

Then, if p0 	=p′
0 we can find a sphere centered at a point of A with radius

strictly lower than r, and containing A. This contradicts (15).

In practice, we have to compute the circumcenter of a given convex and
compact set A, that is, to find a point p0 ∈A such that

max
x∈A

d(p0,x)=min
p∈A

max
x∈A

d(p,x). (16)

Several algorithms have been proposed to solve particular cases of this
problem. For example, in the case of convex polyhedra, the solution of (16)
is the center of the minimum covering sphere for the set of vertices of the
polyhedron. The problem of computing the smallest enclosing circle of a
set of points in two dimensions was first posed by Sylvester in 1857. At
present, we dispose of algorithms for N = 2 [12, 27], N = 3 [19], and arbi-
trary N [15, 26].



512 B. LLANAS AND F.J. SAINZ

5.1. axis-parallel boxes of variable center and dimensions

PROPOSITION 4. If A ∈ H(R3) is convex, we can find an axis-parallel
box C such that

H(C,A)�
√

3
2

δ(CA).

Proof. Let C be the axis-parallel cube circumscribed to the circum-
sphere of A,CA.The diameter of this cube is

√
3δ(CA).

By Lemma 10, the center of CA,p0, belongs to A. By Lemma 2,
h(C,A)=d(v∗,A), where d(v∗,A)=maxi=1,8 d(vi ,A)({vi} are the vertices of
C), then

h(C,A)=d(v∗,A)�d(v∗,p0)=
√

3
2

δ(CA).

Since h(A,C)=0, the result follows.

PROPOSITION 5. If A∈H(R3) is convex, and C is an axis-parallel box C

such that the length L of its largest edge verifies L>(1+√
3)δ(CA) then,

H(C,A)>

√
3

2
δ(CA).

Proof. We call F to any of the minimum area faces of C and F ′ to the
opposed face. By PF and PF ′ we denote the planes containing F and F ′,
respectively. We consider the following cases

• CA∩PF 	=∅ or CA∩PF ′ 	=∅.

Assume, for example, CA∩PF 	= ∅. The projection of each vertex vF ′

of F ′ on A, verifies

d(vF ′, πA(vF ′))�L−h,

where h is the distance from PF to a plane T parallel to PF , tangent
to CA, and such that CA is included in the half-space delimited by T

which does not contain the face F ′.
Since h� δ(CA), we have

H(C,A)�h(C,A)�d(vF ′, πA(vF ′))�L− δ(CA).

Hence

H(C,A)>(1+
√

3)δ(CA)− δ(CA)>

√
3

2
δ(CA).
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• CA∩PF =∅ and CA∩PF ′ =∅. CA is placed between the planes PF

and PF ′.
Consider the planes T and T ′ tangent to CA which are parallel to
PF and such that there are not points of CA between T and PF and
between T ′ and PF ′.
If we call t to the distance between PF and T and t ′ to the distance
between PF ′ and T ′, we have

t + t ′ =L− δ(CA). (17)

If vF and vF ′ are vertices of C in F and F ′, respectively, we have

h(C,A)�d(vF ′, πA(vF ′))� t ′,
h(C,A)�d(vF ,πA(vF ))� t,

therefore,

h(C,A)�max(t, t ′).

By Lemma 8(b) and (17)

max(t, t ′)� 1
2
(L− δ(CA)).

Since L>(1+√
3)δ(CA), it follows

H(C,A)�h(C,A)>

√
3

2
δ(CA).

• CA ∩ PF = ∅ and CA ∩ PF ′ = ∅. CA is not placed between PF and
PF ′.
Assume, for example, that PF is between CA and C. Then, for each
vertex vF ′ of F ′

d(vF ′, πA(vF ′))�L.

Then

H(C,A)�h(C,A)�d(vF ′, πA(vF ′))�L

>(1+
√

3)δ(CA)>

√
3

2
δ(CA).
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Now, let the bounding box of A (the minimal axis-parallel box that con-
tains A) be

[c1
1, c

1
2]× [c2

1, c
2
2]× [c3

1, c
3
2].

A reduced search space for the vertex a of the box C =conv({a+b.d/b∈
{0,1}3}) is given by the interval

I = [c1
1 −α, c1

2]× [c2
1 −α, c2

2]× [c3
1 −α, c3

2],

where α ≡ (1+√
3)δ(CK).

In effect, Propositions 3 and 4 give necessary conditions for feasible
points. Points that do not verify a priori one of them can be removed from
the search space.

Then, any parallel-axis box C with a /∈ I such that, C ∩ A 	= ∅ (Proposi-
tion 3) does not accomplish the condition stated in Proposition 4 because
L>(1+√

3)δ(CA) and by Proposition 5

H(C,A)>

√
3

2
δ(CA).

By Proposition 5 the search space for the diagonal d of the box can be
choosen as the interval

[0, (1+
√

3)δ(CA)]3.

5.2. spheres of variable center and radius

PROPOSITION 6. If A∈H(R3) is convex, we can find a sphere S, such that

H(S,A)� δ(CA)

2
.

Proof. Let S =CA be the circumsphere of A. By Lemma 10 the center
of CA,p0 belongs to A.

Let x be an arbitrary point of S not contained in A. Let l be the half-
line starting at p0 and passing through x. Then

d(x, πA(x))�d(x, l ∩ ∂A)�d(l ∩ ∂S,p0)= δ(CA)

2
,

hence

h(S,A)=max
x∈S

d(x,A)� δ(CA)

2
.
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Since h(A,S)=0, the result follows.

PROPOSITION 7. If A ∈ H(R3) is convex, and S is a sphere such that
δ(S)>δ(CA)+2ε, then H(S,A)>ε.

Proof. By Lemma 5, the minimum of h(M(S),CA) is attained when
M(S) is centered at the circumcenter of A. Call S ′ to such M(S), then

h(S ′,CA)= δ(S)− δ(CA)

2
>ε.

Since A⊂CA, by Lemma 4, it follows that

h(S ′,A)�h(S ′,CA),

therefore,

H(S,A)�h(S,A)�h(S ′,A)�h(S ′,CA)>ε.

Then, if δ(S)>2δ(CA), by Proposition 7, it follows that

H(S,A)>
δ(CA)

2

and the necessary condition in Proposition 6 is not verified. Therefore, we
can vary the radii of the spheres in the interval

[0, δ(CA)].

Now, let the bounding box of A be

[c1
1, c

1
2]× [c2

1, c
2
2]× [c3

1, c
3
2].

A reduced search space for the center of the spheres is given by the
interval

I = [c1
1 −β, c1

2 +β]× [c2
1 −β, c2

2 +β]× [c3
1 −β, c3

2 +β],

where β = δ(CA).

In effect, if c /∈ I and S = B̄r(c), the necessary condition S ∩ A 	= ∅
(Proposition 3) is accomplished only if r > δ(CA) and, then the necessary
condition in Proposition 6 is not verified.
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5.3. sets generated by rigid motions of a compact and
convex set K0 in R3

PROPOSITION 8. Let A,B ∈H(R3) and let p be an arbitrary point in R3,
then

H(A,B)�H(A, {p})+H({p},B).

Proof. H is a metric in H(R3).

If A,K0 ∈H(R3) are convex and B =T (K0), we can find a point p and
a translation T such that minimize the upper bound of H(A,T (K0)) in
Proposition 8. By Lemma 10, it suffices to consider T =Tp0−p′

0
and p = p0,

where p0 and p′
0 are the circumcenters of A and K0, respectively.

In this way, we obtain a reduction of the Hausdorff distance by means
of pure translation.

Therefore, a simple procedure for determining a feasible set of displace-
ments is the following:

1. Move K0 by means of the translation that transforms the circumcen-
ter of K0 in the circumcenter of A. Call K ′

0 to Tp0−p′
0
(K0). Consider p0

as the coordinate origin O.
Now, by Proposition 3, it suffices to consider only displacements that
translate a point in K ′

0 into a point in A. This set of displacements
is difficult to find exactly but it can be approximated in the following
way:

2. Compute a point xf having maximum norm in K ′
0. Consider the

sphere

B‖xf ‖(O). (18)

Any rotation which lets O invariant transforms a point of K ′
0 into an

interior point of this sphere.
3. Determine the bounding box I of B‖xf ‖(O). Let this bounding box be

I = I1 × I2 × I3 = [a1
1, a

1
2]× [a2

1, a
2
2]× [a3

1, a
3
2].

4. Compute the bounding box J of A

J =J1 ×J2 ×J3 = [b1
1, b

1
2]× [b2

1, b
2
2]× [b3

1, b
3
2].
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5. The approximate feasible set of displacements is given by the interval

J − I = (J1 − I1)× (J2 − I2)× (J3 − I3)= [b1
1 −a1

2, b
1
2 −a1

1]

×[b2
1 −a2

2, b
2
2 −a2

1]× [b3
1 −a3

2, b
3
2 −a3

1].

(we use the notation given in [28] for the difference of multidimen-
sional intervals).

We remark that

• The choice of the circumcenter, as the reference point for decreasing
the Hausdorff distance by translation, is aimed to reduce the size of
the bounding box that contains the sphere (18).
A different problem is the obtainment of a pseudooptimal match-
ing by means of pure translation. This problem has been studied, for
example, in [1]. In that paper, the reference point proposed is the
Steiner point. Efrat et al. [9] describe algorithms for pseudooptimal
matching in the case of sets of points in RN .

• The above procedure can be applied if we are able to calculate cir-
cumcenters, points farthest of the origin, and bounding boxes of the
involved figures. In the case of convex polyhedra there exist algorithms
for performing all these computations.

6. Conclusion

We prove that some important Hausdorff matching problems can be solved
by global Lipschitz optimization techniques. We provide upper bounds of
the Lipschitz constant in the cases studied.

Since the results are refered to compact sets, they can be applied to very
different matching problems involving:

• Finite sets of points.
• Bounded curves and surfaces.
• Convex and non-convex polyhedra.
• Finite unions of the above type of sets.

We give practical procedures for reducing the search space of the min-
imization problems when the objective set A and the elements of the
approximating family F are convex.

Although we consider only the case N = 3, most part of the results of
this paper can be extended, with the corresponding modifications, to any
dimension.

Future work should address possible improvements of the Lipschitz con-
stants given here, feasible domains for non-convex sets, obtainment of
numerical results, and comparison with other methods.
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